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Multimode minimum uncertainty squeezed states 

G J Milburn 
Physics Department, University of Waikato, Hamilton, New Zealand 

Received 20 September 1982, in final form 18 July 1983 

Abstract. The concept of single mode ‘squeezed state’, a minimum uncertainty state with 
reduced fluctuations in either of the two canonically conjugate variables, is generalised to 
an arbitrary number of modes. It is shown that the n-mode squeezed states are a subset 
of the generalised coherent states of Sp(2n: R). 

1. Introduction 

Recently research in such seemingly disparate areas as gravitational radiation detection 
and communications theory has motivated consideration of novel states for the elec- 
tromagnetic field known as squeezed states (Yuen and Shapiro 1978, 1980, Shapiro 
et a1 1979, Caves 1981). These states are single mode minimum uncertainty states 
( M u s )  for which the fluctuations in one quadrature phase of the field are smaller than 
would occur for a coherent state (Yuen 1976). 

These states may also be considered as MUS of the one-dimensional harmonic 
oscillator for which the fluctuations in position are smaller than the fluctuations that 
would occur in the ground state. 

It is our intention in this paper to generalise the concept of a single mode squeezed 
state to the many mode case. 

The key to such a generalisation is to realise that single mode squeezed states are 
generated from the vacuum by an element of the unitary representation of Sp(2: R) 
given by exponentiating the operators of the corresponding Lie algebra. The appropri- 
ate generalisation is then to consider the squeezed states as a subset of generalised 
coherent states for Sp(2n: R). 

For a specified set of canonical coordinates, not all unitary representations of 
Sp(2n: R) will generate MUS from the vacuum. In $ 2  we derive the condition an 
element of the representation must satisfy in order that the state produced be a MUS. 

We show that the multi-mode squeezed states are the direct product of single mode 
squeezed states each of which is generated from the ground Fock state IO), by a unitary 
operator whose generator is an element of the Cartan subalgebra of Sp(2n: R). 

2. Minimum uncertainty states 

Given a set of canonical coordinates {gi, f i i }  ( i  = 1, n) the commutation relations are 
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We then define the variances in the state 14) by 

~ ( 4 i )  z (IL14?1+)-(~14il+)2 U ( $i ( $ 1  B? I 4)  - ( + 1 Pi I +)*. 

We wish to find the states 14) which minimise the uncertainty product u ( $ ~ ) u ( $ ~ ) .  

The standard result (Biedenharn and Louck 1981) is that I+) will be a MUS when 
The states I+) are then the MUS with respect to the set {&$ i } .  

6i14) = Ai&) Ai E C (2 .2)  

where 

6, = 4 -(4l4l!b) 
el =$,-(4I$,l+). 

When these conditions hold we find 

~ ( 4 , )  = &hA, 

U( 6,) = $ih/A, 

and 

(2 .3)  

U ( ~ l ) u ( $ l )  =$I2. (2 .8)  

Since d,, are self-adjoint operators in the Hilbert space L2(-oo,oo), ~ ( 4 , )  and 
v (  6,) are positive definite. The second minimum uncertainty condition, equation ( 2 . 3 ) ,  
then requires that A,  be pure imaginary. 

The operators $', dl together with the identity I form the Lie algebra of the 
Heisenberg-Weyl group N ( n ) .  It is convenient to define bose operators by a complex 
extension of this Lie algebra 

a, = (1/J%)(p14*, +iC1/pl) ( 2 . 9 ~ )  

a:  = ( l / J T i ) ( p , q * ,  -i$,/p,). (2 .9b)  

Then [a , ,  a: ]  = I. The usual harmonic oscillator annihilation and creation operators 
have p, =6, where w,  is the fundamental frequency of the ith mode. For later 
use we also define the quadrature phase operators by (Caves 1981). 

- 
2; = ~ ( a l + U : ) = ( p , / J 2 h ) q * ,  (2 .10a)  

2; = ( 1 / 2 i ) ( a l - a : )  = ( 1 / J 2 h ) $ , / p l .  ( 2 .  l o b )  

The eigenstates of the harmonic oscillator with Hamiltonian 

(2.11) 

span an irreducible unitary representation of N ( n ) .  Let us indicate these states by 
l{ni})=II?=, Ini) where ni is the number of quanta in the ith mode. In particular we 
have the ground state 10) for which 

Ui lO)  = 0 (2 .12)  
for every ai. 
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Using equation (2.9a) we see that 10) is in fact a MUS with hi = - i /pf .  The variances 
of Bi and Gi for the state 10) are then 

U ( ~ J  = h/2pT (2.13) 

(2.14) 

Let D( a , )  indicate elements of the unitary representation of N (  n) obtained by exponen- 
tiating the elements of the Lie algebra {ai, a:, I}. The coherent states la) are then 
defined by (Glauber 1963a, b). 

J{ai}) G D(ai)lO) (2.15) 

where 

) t D ( a i )  =exp a i a i  -.:ai . 
( i  

The coherent states ({ai}) are also MUS. To see this we make use of an alternative 

({ai}IffI{ai>> E (OIAIO) (2.16) 

interpretation of D( a i ) ,  suggested by the following identity 

where 
A SE D+( a i )dD(  ai). (2.17) 

We then define an isomorphism of the set of operators D to the set of linear 
transformations 9 defined by 

(2.18a) 

(2.18 b )  

(2.19) 

It is then clear that under the displacements (2.18a, b )  the variances of both Qi and 
4 in the state 10) are equal and thus I{ai}) are also MUS with variances given by equations 
(2.13) and (2.14). 

The concept of a coherent state has been generalised to an arbitrary Lie group G 
(Perelomov 1972). We now summarise the essential elements of this generalisation. 

Let T be an irreducible representation of G acting in the Hilbert space X. If IG0) 
is some fixed vector in this space, we define a subgroup H = G by the set of elements 
{ h }  such that T(h)lt,ho)=ei"'h'190). We refer to H as the stationary subgroup of G. 
The states I$),) = T (  h)lf,bo), h E H are clearly physically equivalent. Furthermore the 
states I&) for all g which belong to one left co-set G on H also differ from each other 
only by a phase factor. 

x ) )  are obtained by selecting a representative 
element g ( x )  in the element x of G / H  corresponding to g. 

The generalised coherent states 

The definition of coherent states makes no reference to the concept of a MUS. 
It is one of the purposes of this paper to find the subset of generalised coherent 

states of Sp(2n: R) which are MUS for a given set of canonical coordinates. To do this 
we make use of the isomorphism of unitary representations of Sp(2n: R)  and the linear 
canonical transformations of the given set of canonical variables. 
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3. Sp(2n: R) and minimum uncertainty 

The generators of Sp(2n: R) are given by the following n(2n + 1) bilinear operators 
(Moshinsky 1973) 

Hi=$(a:ai+aia:)  i =  1 , .  . . n (3 . l a )  

a :a, = C,, 

a:a:, ala, 

i # j ,  i, j =  1 , .  . . n 

i s j = 1, . . . n. 

(3 . lb)  

( 3 . 1 ~ )  

The n2 operators H, and C,, are the generators of the U(n)  subgroup of Sp(2n: R). 
The Fock states I{n,}) form two irreducible representations of Sp(2n: R), one 

involving X I  n, =even and the other with XI  n, = odd. In the even Fock space the state 
with n, = O  for all i is the ground state (0) of the Hamiltonian (2.11). We take 10) as 
the fixed base vector for the definition of the generalised coherent states of Sp(2n: R). 
There are no minimum uncertainty states in the representation with X I  n, =odd. We 
will thus restrict the discussion to the even basis only. The stationary subgroup is then 
seen to be U(n). Thus G / H = S p ( 2 n :  R)/U(n)  and the generalised coherent states 
are produced by acting on the state 10) with the unitary operators generated by the 
n ( n  + 1) operators of equation ( 3 . 1 ~ ) .  However only a subset of these states are MUS 

as we shall shortly show. 
Let U be the unitary representation of Sp(2n: R). We then define the matrices S 

by 

2' U+z*U = is (3.2) 

where 

i = J Z (  x*,  X2) 

xi = (g;, * . .2; ). 

and 

The matrices S are linear canonical transformations, i.e. S K S ~  = K where 

K = (  -I 0 I). 

The matrices S form a matrix representation of Sp(2n: R). 
If we write 

S = ( A  C D  ") 

(3.3) 

(3.4) 

where A,  B, C, D are real n x n  matrices, then for S to be canonical we require 
(Moshinsky 1973) 

C B ~  = D A ~ -  I (3.5a) 

B A ~ = A B ~  (3.5b) 

B ~ D  = D ~ B .  (3.5c) 
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If we further restrict S to be orthogonal then in addition to the above conditions 
we require 

A = D  (3.6a) 

B=-C (3.6b) 

(AT- iET)(A+iB)=I .  ( 3 . 6 ~ )  

This orthogonal subgroup is the group U( n). 

which the state I$)= UlO) is a MUS with respect to 2? 
We now consider the following question. What are the unitary operators U for 

The first minimum uncertainty condition (equation (2.2)) may be written as (Note: 
(IL/di/ +) = ( $ 1  Bz I +) = 0 )  

(X, +iX2A)l$) = 0 (3.7) 

where A is the diagonal matrix D ( h l , .  . . A,,). The second minimum uncertainty 
condition (equation (2.3)) requires that A be real. 

Clearly if U is an element of the unitary representation of U ( n ) ,  I$) is a MUS with 
A = Z, as it differs from the ground state only by a phase factor. Furthermore if U is 
an element of the unitary representation of U(n)  the state 14) = Ul$),  is a MUS with 
A = I, if and only if I+) is a MUS with A = I .  This follows directly from the fact that 
U(n)  is the stationary subgroup of Sp(2n: R). 

Theorem 1 .  Let I+) = UlO) be a generalised coherent state of Sp(2n: R). Then I+) is 
a MUS with respect to 2 if and only if a real diagonal matrix A exists such that 

A = D A  C=-B.\ (3.8) 

where A, B, C, D are real n X n matrices defined by equations (2.3) and (3.4). 

Proof. Let I$)  = UlO) where U is an element of the unitary representation of Sp(2n: R). 
Assume )$) is MUS. Then there exists a real diagonal matrix A such that 

(XI +iX2A)l$) = 0 

i.e. 

(8, + iX2<\) UJO) = 0. 

Acting from the left with U' we find 

U'(Xl  +iX2A)UIO)=0 

:. (Xi +iB; ~ 1 1 0 )  = o 
where Xi and Xi are defined by equation (3.2). Thus 

(XI (A + iBA) + iX2( D A  - iC))/O) = 0 

:. (XI + i X z ( D A  - iC)(A + iBA)-')lO>(A + i B A )  = 0 

(we have placed the ket to the left of A +!BA a,s the matrices only act on the coordinates 
Xi). However as10)isthegroundstate (Xl+iXz)(0)=O, thus(DA-iC)(A+iBA)- '=Z 
or A = D A  and C=-BA. 



742 G J Milburn 

As a corollary to the above theorem we have the following. If I+) is a MUS for 
which A = D(Al,. . . A,) then the variances in the state I+) are 

v(Qi) = hAi/2pLf (3.9a) 

V(bi) =hp:/2Ai. (3.9b) 

Proof, As I+) isa MUS (XI +iX2A)l+) = 0 which can be written as (ii[$) = -i(Ai/pf)fiil$). 
However as A is real ( i , ! ~ l q * ~ $ ~  +fitql1+) = 0 which upon using the commutation relations 
(equation (2.1)) becomes ( $ l ~ i $ i l i , ! J )  = -tit?. Thus (+IQ?I$) = V(Qi) = $ h h i / p : .  Similarly 
V( ti) =hp?/2Ai. 

We define all those MUS for which A # I as the multimode squeezed states. Thus 
the multimode squeezed states are a subset of the generalised coherent states of 
Sp(2n: R). 

4. Two mode squeezed states 

As an illustration of the preceding discussion we now discuss the two dimensional 
squeezed states in some detail. 

Generalised coherent states of the semidirect product N(2)  OSp(4: R) have been 
discussed by Gulshani and Volkov (1980), under the name of 'Heisenberg symplectic 
angular momentum coherent states'. Caves (1982) has also defined a set of two mode 
'squeezed states'. The states considered by these authors however were not restricted 
to be MUS. 

The ten generators of Sp(4: R) may be written in the form 

f3 = ( a  ' b + btu) = 2( 2, 9, + g2 q2) (4.3) 

f 4 = - i ( a t b - b ' a ) = 2 ( ~ , ~ z - ~ z ? , )  

f5 = ( a b  + a 'b ')  = 2( 2, P, - k2 P2) 

9, = $( a 2 +  .+2) = (2; - 2; ) 
f8=-$i (a2-a t2)  =(2122+2221) 
f 9 = $ ( b 2 +  bt2) = (9:  - 9; )  

f6 = -i( ab - at  bt) = 2( g2 9, + 2, g2) 

T *,,, =-_ - :i( b2 - bt2) = ( 9, g2 + P2 PI). 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

The generators fl  to f4 form a closed Lie-alg:bra and are the generators of the 
stationary subgroup U(2). The generators T8,  Tlo comprise the Cartan sub-algebra 

The Unitary representation of Sp(4: R) is then defined by the exponential map 
of Sp(4: W). 

u i ( y i )  = exp(-iyifi). (4.11) 

The representation space is once again taken to be the two-dimensional Fock space 
Ina, n b ) ,  with n, + nb an even integer. 
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The symplectic matrices associated with Vi and 2 = (X, 9) are defined by 

i‘ = u;;ui = iSi(Y,). (4.12) 

The explicit form of all the matrices Si(yi) is given in the appendix. It is clear that 
not all the transformations Si are independent, in fact we have 

S7( Y7) = SI (77/4)Sd-y7)S1(- r / 4 )  (4.13) 

(4.14) 

(4.15) 

s6( 76) = s3( .rr/4)s7( Y6)s9(  Y6)s3(-r/4) 

S,( Y4) = S3(--7r/4)S*( Y4)S1(- Y4)S3( .rr/4). 

(4.16) 

(4.17) 

It is clear that the most general canonical transformation in two dimensions may be 
built out of the U(2) transformations together with the two scale changing transforma- 
tions SS and Slo (equivalently US and Ulo). 

Applying the conditions of equation (3.8) to the symplectic matrices it is clear that 
the two mode squeezed state in f is 

IYS, Y*o)=  L / s ( Y s ) ~ l o ( Y l o ) l o ) .  (4.18) 

For which 

(4.19) 

(4.20~2, b) 

V (  PI) = +e’Y,o V (  pz) = +e-’v10. (4.20c, d) 

The two mode squeezed states are thus generated by the two operators of the Cartan 
sub-algebra of Sp(4: R). The two mode squeezed states are thus the direct product 
of the single mode squeezed states for each mode. 

Although the operators U,, U,, U,, U6 do not generate MUS from 10) with respect 
to 2, inspection of equations (4.13)-(4.16) suggest that the states generated will be 
MUS with respect to a different set of canonical variables 2’. 

Determining for which variables a given state is a MUS is important in devising 
schemes to produce squeezed states of the electromagnetic field. Squeezed states may 
be generated in nonlinear optical processes such as parametric amplification (Walls 
1983). In the non-degenerate case the interaction Hamiltonian for this process takes 
the form 

H , = $ i h . ~ *  (ab-a tb t )  (4.21) 
where ,y is a coupling constant a,  b are the annihilation operators tor the two coupled 
modes. This interaction is clearly proportional to the generator T6. We thus expect 
the interaction to lead to a reduction of fluctuations in the variables 2‘ where 2’ = 
iS3(.rr/4)S,(rr/4)Sz(r/4). In terms of bose variables of the new frame c, d this 
transformation may be written as 

ei-/4 = (a- ib) /& 

d eln/4 = (b  -iff)/&. 
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Thus to observe the reduction of fluctuations one needs to  combine the output modes 
a, b with a 90' phase shift between them. 

5. Conclusion 

We have shown that the n-mode squeezed states are a subset of the generalised 
coherent states of Sp(2n: R). They are produced from the vacuum state 10) by unitary 
operators whose generators comprise the n-dimensional Cartan sub-algebra of 
Sp(2n: R). Each element of this sub-algebra corresponds to a scale change in the 
canonical variables and generates a single mode squeezed state. Thus, for a given set 
of canonical variables, the multi mode squeezed states are the direct product of single 
mode squeezed states. 

Using an isomorphism between the unitary representation of Sp(2n: R) and a matrix 
representation with respect to a given set of canonical coordinates we have given a 
criteria (equations (3.8)) for determining the subset of generalised coherent states 
which are the squeezed states. 
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Appendix 

We give below the explicit form of the matrix representations of Sp(4). 
cos y1 0 -sin yl 0 0 0 0  

sin y1 0 cos y ,  

1 0  

0 0 0  0 sin y2 0 cos y2 

cos y3 0 0 -sin y3 cos y4 sin y4 

0 cos y3 -sin y3 0 
0 sin y3 cos y3 0 0 

sin y3 0 0 cos y3 0 

i cosh y5 0 0 -sinh y5 

cosh y5 -sinh y5 0 
-sinh y5 cosh y5 0 

-sinh y5 0 0 cosh y5 

cosh 7 6  sinh y6 0 
sinh y6 cosh y6 0 

0 cosh y6 -sinh y.5 

0 0 -sinh y6 cosh y6 

0 o \  
0 

cos y4 sin y4 
-sin y4 cos y4 
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